Singular Solutions to Special Lagrangian Equations with Subcritical Phases and Minimal Surface Systems
نویسندگان
چکیده
We construct singular solutions to special Lagrangian equations with subcritical phases and minimal surface systems. A priori estimate breaking families of smooth solutions are also produced correspondingly. A priori estimates for special Lagrangian equations with certain convexity are largely known by now.
منابع مشابه
Solving singular integral equations by using orthogonal polynomials
In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...
متن کاملNew Solutions for Singular Lane-Emden Equations Arising in Astrophysics Based on Shifted Ultraspherical Operational Matrices of Derivatives
In this paper, the ultraspherical operational matrices of derivatives are constructed. Based on these operational matrices, two numerical algorithms are presented and analyzed for obtaining new approximate spectral solutions of a class of linear and nonlinear Lane-Emden type singular initial value problems. The basic idea behind the suggested algorithms is basically built on transforming the eq...
متن کاملExistence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth
In this paper, we are concerned with the following fractional Schrödinger-Poisson system: (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...
متن کاملDifferential systems in higher-order mechanics1
The aim of this paper is to provide a geometric description and classification of general systems of ordinary differential equations of order s ≥ 1 on fibered manifolds, and to investigate geometric properties of solutions of these equations. The present setting covers Lagrangian systems, higher order semisprays, and constrained systems (equations subject to constraints modeled by exterior diff...
متن کاملOn the pressureless damped Euler-Poisson equations with quadratic confinement: critical thresholds and large-time behavior
We analyse the one-dimensional pressureless Euler-Poisson equations with a linear damping and non-local interaction forces. These equations are relevant for modelling collective behavior in mathematical biology. We provide a sharp threshold between the supercritical region with finite-time breakdown and the subcritical region with global-in-time existence of the classical solution. We derive an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011